Chapter Review

BIG ideas and Answering the Essential Questions

Space Figures and Cross

Sections (Lesson 11.1)

This verteral plane intersects the cylinder in a rectangular croses section

Surface Areas and Volumes of Prisms,
Cylinders, Pyramids, and Cones
(Lessons 11-2 through 11-5)
atecsuarement
vnu an find the surface ame or volume of a solid by first choosing a formula to
use and then substituting
the needed dimensions into
the formula

Similarity
The surtace areas of similar soluds are proportional ti. the squares of their corresponding dimensions. The volumes are proportional
to the cubes of their
corresponding dimensions.

```
Visumlizetion
vor con determine the
Gorcention of a wolvd and
\mathrm{ wiane thy vitualuting how}
inv niane chaces the wolid
tavm a two dimensional
rece serton
```

Surface Area (S.A.) Volume (V)
Prism $\quad \mathrm{ph}+2 B \quad \mathrm{Bh}$
Cylinder $\quad 2 \pi r h+2 B \quad B h$

Pyramid $\quad \frac{1}{2} p i+B \quad \frac{1}{3} B h$
Cone
$\pi r \ell+B$
e

Surface Areas and Volumes of Spheres (Lesson 11-6)

$$
\begin{aligned}
S . A & =4 \pi r^{2} \\
V & =\frac{4}{3} \pi r^{3}
\end{aligned}
$$

Chapter Vocabulary

- altitude (pp. 699, 701.

708, 711)

- center of a sphere (p. 733)
- cone (p. 711)
- cross section (p. 690)
- cylinder (p. 701)
- edge (p. 688)
- face (p. 688)
- great circle (p. 733)
- hemisphere (p. 733)
- lateral area (pp. 700, 702, 709, 711)
- lateral face (pp. 699, 708)
- polyhedron (p. 688)
- prism (p. 699)
- pyramid (p. 708)
- right cone (p. 711)
- right cylinder (p. 701)
- right prism (p. 699)
- slant height (pp. 708, 711)
- sphere (p. 733)
- surface area (pp. 700, 702, 709, 711)
- volume (p. 717)

Choose the correct term to complete each sentence.

1. A set of points in space equidistant from a given point is called $a(n)$?.
2. $A(n)$? is a polyhedron in which one face can be any polygon and the lateral faces are unangles that meet at a common vertex.
3. If you shice a prism with a plane, the intersection of the prism and the plane is $a(n)$
? of the prism.

HROMECCOMEMRCOM

Answers

Chapter Review

1. sphere
2. pyramid
3.

cross section

Answers

Chapter Review (continued)

4-5. Answers may vary. Samples are given.
4.

5.

6. 8
7. 8
8. 5
9. a circle
10.

11. $36 \mathrm{~cm}^{2}$
12. $66 \pi \mathrm{~m}^{2}$
13. 208 in 2
14. $36 \pi \mathrm{~cm}^{2}$
15. $325 \pi \mathrm{~cm}^{2}$

11-1 Space Figures and Cross Sections

Quick Review

A polyhedron is a three-dimensional figure whose surfaces are polygons. The polygons are faces of the polyhedron.
An edge is a segment that is the intersection of two faces.
A vertex is a point where three or more edges intersect. A cross section is the intersection of a solid and a plane.

Example

How many faces and edges does the polyhedron have?

The polyhedron has 2 triangular bases and 3 rectangular faces for
 a total of 5 faces.
The 2 triangles have a total of 6 edges. The 3 rectangles have a total of 12 edges. The total number of edges in the polyhedron is one half the total of 18 edges, or 9 .

Exercises
Draw a net for each three-dimensional figure
4.

5.

Use Euler's Formula to find the missing number
6. $F=5, V=5, E=$
7. $F=6, V=, E=12$
8. How many vertices are there in a solid with 4 triangular faces and 1 square base?
9. Describe the cross section in the figure at the right.
10. Sketch a cube with an equilateral triangle cross section.

11-2 Surface Areas of Prisms and Cylinders

Quick Review

The lateral area of a right prism is the product of the perimeter of the base and the height. The lateral area of a right cylinder is the product of the circumference of the base and the height of the cylinder. The surface area of each solid is the sum of the lateral area and the areas of the bases.

Example

What is the surface area of a cylinder with radius 3 m and height 6 m ? Leave your answer in terms of π.

$$
\begin{aligned}
& \text { S.A. }=\mathrm{L} . \mathrm{A} .+2 B \\
& \text { Use the formula for surface area } \\
& \text { of a cylinder. } \\
& =2 \pi / h+2\left(\pi^{2}\right) \quad \text { Substitute formulas for lateral } \\
& \text { area and area of a circle. } \\
& =2 \pi(3)(6)+2 \pi(1)^{2} \quad \text { Substitute } 3 \text { for } r \text { and } 6 \text { for } h \text {. } \\
& =36 \pi+18 \pi \quad \text { Simplify } \\
& =54 \pi
\end{aligned}
$$

15. A cylinder has radius 2.5 cm and lateral area $20 \pi \mathrm{~cm}^{2}$. What is the surface area of the cylinder in terms of π ?

Exercises

Find the surface area of each figure. Leave your answersin terms of π where applicable.
13.

11.

14.

12.

the surface area of the cylinder is $54 \pi \mathrm{~m}^{2}$.

Surface Areas of Pyramids and Cones

Quick Review
the lateral area of a regular pyramid is half the product fithe perimeter of the base and the slant height. The |ateral area of a right cone is half the product of the and he the slant height. The surface of the base.

Example

What is the surface area of a cone with radius 3 in . and dani height 10 in ? Leave your answer in terms of π.

$$
\begin{array}{rlrl}
S A & =L . A .+B & & \begin{array}{l}
\text { Use the formula for surface area of } \\
\text { a cone. }
\end{array} \\
& =\pi \ell+\pi^{2} & \begin{array}{l}
\text { Substitute formulas for lateral area } \\
\text { and area of a circle. }
\end{array} \\
& =\pi(3)(10)+\pi(3)^{2} & \begin{array}{l}
\text { Substitute } 3 \text { for } r \text { and } 10 \text { for } \ell .
\end{array} \\
& =30 \pi+9 \pi & & \text { Simplify. } \\
& =39 \pi & &
\end{array}
$$

Exercises

Find the surface area of each figure. Round your answers to the nearest tenth
16.

17

18.

19.

20. Find the formula for the base area of a prism in terms of surface area and lateral area.

The surface area of the cone is $39 \pi \mathrm{in} .^{2}$.

$11-4$ and 11-5 Volumes of Prisms, Cylinders, Pyramids, and Cones

Quick Review

The volume of a space figure is the space that the figure accupies. Volume is measured in cubic units. The volume of a prism and the volume of a cylinder are the product of the area of a base and the height of the solid. The volume of a pyramid and the volume of a cone are one third the product of the area of the base and the height of the solid.

Example

What is the volume of a rectangular prism with base $\mathbf{3 c m}$ by 4 cm and height 8 cm ?

$$
\begin{aligned}
V & =B h & & \text { Use the formula for the volume of a prism. } \\
& =(3 \cdot 4)(8) & & \text { Substitute. } \\
& =96 & & \text { Simplify. }
\end{aligned}
$$

22.

24.

The volume of the prism is $96 \mathrm{~cm}^{3}$.

Exercises

Find the volume of each figure. If necessary, round to the nearest tenth.
23.

21.

16. about $185.6 \mathrm{ft}^{2}$
17. $576 \mathrm{~m}^{2}$
18. about 50.3 in. 2
19. about $391.6 \mathrm{in}^{2}$
20. $B=\frac{S . A .-L . A .}{2}$
21. $84 \mathrm{~m}^{3}$
22. $24.5 \mathrm{ft}^{3}$
23. $410.5 \mathrm{yd}^{3}$
24. $13.9 \mathrm{~m}^{3}$

Answers

Chapter Review (continued)

25. $S . A=314.2 \mathrm{in.}^{2} ; V=523.6 \mathrm{in}^{3}{ }^{3}$
26. $S \cdot A=153.9 \mathrm{~cm}^{2} ; V=179.6 \mathrm{~cm}^{3}$
27. $S . A=50.3 \mathrm{ft}^{2} ; V=33.5 \mathrm{ft}^{3}$
28. $S . A=8.0 \mathrm{ft}^{2} ; V=2.1 \mathrm{ft}^{3}$
29. $904.78 \mathrm{~cm}^{3}$
30. $314 \mathrm{~m}^{2}$
31. 8.6 in. 3
32. Answers may vary. Sample:

33. $27: 64$
34. $64: 27$
35. 324 pencils

11-6 Surface Areas and Volumes of Spheres

Quick Review

The surface area of a sphere is four times the product of π and the square of the radius of the sphere. The volume of a sphere is $\frac{4}{3}$ the product of π and the cube of the radius of the sphere.

Example

What is the surface area of a sphere with radius 7 ft ?
Round your answer to the nearest tenth.

S.A.	$=4 \pi r^{2} \quad$ Use the formula for surface area of a sphere.
	$=4 \pi(7)^{2} \quad$
	Substitute.
	$\approx 615.8 \quad$ Simplify.

The surface area of the sphere is about $615.8 \mathrm{ft}^{2}$.

Exercises

Find the surface area and volume of a sphere with the given radius or diameter. Round your answers to the nearest tenth.
25. $r=5 \mathrm{in}$.
26. $d=7 \mathrm{~cm}$
27. $d=4 \mathrm{ft}$
28. $r=0.8 \mathrm{ft}$
29. What is the volume of a sphere with a surface area of $452.39 \mathrm{~cm}^{2}$? Round your answer to the neares hundredth.
30. What is the surface area of a sphere with a volume of $523.6 \mathrm{~m}^{3}$? Round your answer to the nearest square meter.
31. Sports Equipment The circumference of a lacrosse ball is 8 in . Find its volume to the nearest tenth of a cubic inch.

11-7 Areas and Volumes of Similar Solids

Quick Review

Similar solids have the same shape and all their corresponding dimensions are proportional.
If the scale factor of two similar solids is $a: b$, then the ratio of their corresponding surface areas is $a^{2}: b^{2}$, and the ratio of their volumes is $a^{3}: b^{3}$

Example

Is a cylinder with radius 4 in . and height 12 in . similar to a cylinder with radius 14 in . and height 35 in .? If so, give the scale factor.

$$
\frac{4}{14} \neq \frac{12}{35}
$$

The cylinders are not similar because the ratios of corresponding linear dimensions are not equal.

Exercises

32. Open-Ended Sketch two similar solids whose surface areas are in the ratio $16: 25$. Include dimensions
For each pair of similar solids, find the ratio of the volume of the first figure to the volume of the second.
33.

34.

35. Packaging There are 12 pencils in a regular-sized box. If a jumbo box is made by tripling all the dimensions of the regular-sized box, how mans pencils will the jumbo box hold?

