11-3

 Surface Areas of

 Surface Areas of Pyramids and Cones

 Pyramids and Cones}

Mathematics Florida Standards
MAFS.912.G-MG.1.1 Use geometric shapes, their measures, and their properties to describe objects.
MP 1, MP 3, MP 4, MP 6, MP 7

Objective To find the surface area of a pyramid and a cone

Think about what dimensions you need and how to get them from what you already know.

MATHEMATICAL PRACTICES

Lesson Vocabulary
pyramid (base, lateral face, vertex, altitude, height, slant height, lateral area, surface area)

- regular pyramid
- cone (base, altitude, vertex, height, slant height, lateral area, surface area)
- right cone

The Solve It involves the triangular faces of a roof and the three-dimensional figures they form. In this lesson, you will learn to name such figures and to use formulas to find their areas.

Essential Understanding To find the surface area of a three-dimensional figure, find the sum of the areas of all the surfaces of the figure.

A pyramid is a polyhedron in which one face (the base) can be any polygon and the other faces (the lateral faces) are triangles that meet at a common vertex (called the vertex of the pyramid).

You name a pyramid by the shape of its base. The altitude of a pyramid is the perpendicular segment from the vertex to the plane of the base. The length of the altitude is the height h of the pyramid.

A regular pyramid is a pyramid whose base is a regular polygon and whose lateral faces are congruent isosceles triangles. The slant height ℓ is the length of the altitude of a lateral face of the pyramid.

Hexagonal pyramid

Square pyramid

In this book, you can assume that a pyramid is regular unless stated otherwise.

The lateral area of a pyramid is the sum of the areas of the congruent lateral faces. You can find a formula for the lateral area of a pyramid by looking at its net.

$$
\begin{aligned}
\text { L.A. } & =4\left(\frac{1}{2} s \ell\right) & & \text { The area of each lateral face is } \frac{1}{2} s \ell . \\
& =\frac{1}{2}(4 s) \ell & & \text { Commutative and Associative } \\
& =\frac{1}{2} p \ell & & \text { Properties of Multiplication }
\end{aligned}
$$

To find the surface area of a pyramid, add the area of its base to its

c nots

Theorem 11-3 Lateral and Surface Areas of a Pyramid

The lateral area of a regular pyramid is half the product of the perimeter p of the base and the slant height ℓ of the pyramid.

$$
\text { L.A. }=\frac{1}{2} p \ell
$$

The surface area of a regular pyramid is the sum of the lateral area and the area B of the base.

$$
\text { S.A. }=\text { L.A. }+B
$$

Problem 1 Finding the Surface Area of a Pyramid

What is the surface area of the hexagonal pyramid?

$$
\begin{aligned}
\text { S.A. } & =\text { L.A. }+B & & \text { Use the formula for surface area. } \\
& =\frac{1}{2} p \ell+\frac{1}{2} a p & & \text { Substitute the formulas for L.A. and B. } \\
& =\frac{1}{2}(36)(9)+\frac{1}{2}(3 \sqrt{3})(36) & & \text { Substitute. } \\
& \approx 255.5307436 & & \text { Use a calculator. }
\end{aligned}
$$

The surface area of the pyramid is about 256 in. ${ }^{2}$.
Got It? 1. a. A square pyramid has base edges of 5 m and a slant height of 3 m . What is the surface area of the pyramid?
b. Reasoning Suppose the slant height of a pyramid is doubled. How does this affect the lateral area of the pyramid? Explain.

When the slant height of a pyramid is not given, you must calculate it before you can find the lateral area or surface area.

Social Studies The Pyramid of Cestius is located in Rome, Italy. Using the dimensions in the figure below, what is the lateral area of the Pyramid of Cestius? Round to the nearest square meter.

- The height of the pyramid
- The base is a square with a side length of 30 m .
- $\triangle A B C$ is right, where $A B$ is the slant height.

Why is a new

diagram helpful for finding the slant height?
The new diagram shows the information you need to use the Pythagorean Theorem.

The slant height of the pyramid

Find the perimeter of the base. Use the Pythagorean Theorem to find the slant height. Then use the formula for lateral area.

Step 1 Find the perimeter of the base.

$$
\begin{aligned}
p & =4 \mathrm{~s} & & \text { Use the formula for the perimeter of a square. } \\
& =4 \cdot 30 & & \text { Substitute } 30 \text { for } s . \\
& =120 & & \text { Simplify. }
\end{aligned}
$$

Step 2 Find the slant height of the pyramid.
$B C$ is the height of the pyramid.
$\overline{C A}$ is the apothem of the base. Its length is $\frac{30}{2} \mathrm{~m}$, or 15 m .

The slant height is the length of the hypotenuse of right $\triangle A B C$, or $A B$.

Step 3 Find the lateral area of the pyramid.

$$
\begin{aligned}
\text { L.A. } & =\frac{1}{2} p \ell & & \text { Use the formula for lateral area. } \\
& =\frac{1}{2}(120) \sqrt{1549.96} & & \text { Substitute } 120 \text { for } p \text { and } \sqrt{1549.96} \text { for } \ell . \\
& \approx 2362.171882 & & \text { Use a calculator. }
\end{aligned}
$$

The lateral area of the Pyramid of Cestius is about $2362 \mathrm{~m}^{2}$.
2. a. What is the lateral area of the hexagonal pyramid at the right? Round to the nearest square foot.
b. Reasoning How does the slant height of a regular pyramid relate to its height? Explain.

Like a pyramid, a cone is a solid that has one base and a vertex that is not in the same plane as the base. However, the base of a cone is a circle. In a right cone, the altitude is a perpendicular segment from the vertex to the center of the base. The height h is the length of the altitude. The slant height ℓ is the distance from the vertex to a point on the edge of the base. In this book, you can assume that a cone is a right cone unless
 stated or pictured otherwise.

The lateral area is half the circumference of the base times the slant height. The formulas for the lateral area and surface area of a cone are similar to those for a pyramid.

C nots

Theorem 11-4 Lateral and Surface Areas of a Cone

The lateral area of a right cone is half the product of the circumference of the base and the slant height of the cone.

$$
\text { L.A. }=\frac{1}{2} \cdot 2 \pi r \cdot \ell, \text { or L.A. }=\pi r \ell
$$

The surface area of a cone is the sum of the lateral area and the area of the base.

$$
\text { S.A. }=\text { L.A. }+B
$$

Problem 3 Finding the Surface Area of a Cone

What is the surface area of the cone in terms of π ?

$$
\begin{aligned}
\text { S.A. } & =\text { L.A. }+B & & \text { Use the formula for surface area. } \\
& =\pi r \ell+\pi r^{2} & & \text { Substitute the formulas for L.A. and } B . \\
& =\pi(15)(25)+\pi(15)^{2} & & \text { Substitute } 15 \text { for } r \text { and } 25 \text { for } \ell . \\
& =375 \pi+225 \pi & & \text { Simplify. } \\
& =600 \pi & &
\end{aligned}
$$

The surface area of the cone is $600 \pi \mathrm{~cm}^{2}$.
Got It ? 3. The radius of the base of a cone is 16 m . Its slant height is 28 m . What is the surface area in terms of π ?

By cutting a cone and laying it out flat, you can see how the formula for the lateral area of a cone (L.A. $=\frac{1}{2} \cdot C_{\text {base }} \cdot \ell$) resembles that for the area of a triangle $\left(A=\frac{1}{2} b h\right)$.

Chemistry In a chemistry lab experiment, you use the conical filter funnel shown at the right. How much filter paper do you need to line the funnel?
The top part of the funnel has the shape of a cone with a diameter of 80 mm and a height of 45 mm .

L.A.	$=\pi r$		
	$=\pi r\left(\backslash r^{2}+h^{2}\right)$		Use the formula for lateral area of a cone.
	To find the slant height, use the Pythagorean Theorem.		
	$=\pi(40)\left(\sqrt{40^{2}+45^{2}}\right)$	Substitute $\frac{1}{2} \cdot 80$, or 40 , for r and 45 for h.	
	≈ 7565.957013		Use a calculator.

You need about $7566 \mathrm{~mm}^{2}$ of filter paper to line the funnel.
4. a. What is the lateral area of a traffic cone with radius 10 in . and height 28 in.? Round to the nearest whole number.
b. Reasoning Suppose the radius of a cone is halved, but the slant height remains the same. How does this affect the lateral area of the cone? Explain.

Lesson Check

Do you know HOW?

Use the diagram of the square pyramid at the right.

1. What is the lateral area of the pyramid?
2. What is the surface area of the pyramid?

Use the diagram of the cone at the right.
3. What is the lateral area of the cone?
4. What is the surface area of the cone?

Do you UNDERSTAND?

MATHEMATCA. PRACTICES
5. Vocabulary How do the height and the slantheight of a pyramid differ?
6. Compare and Contrast How are the formulas ior the surface area of a prism and the surface areaota pyramid alike? How are they different?
(C) 7. Vocabulary How many lateral faces does a pramid have if its base is pentagonal? Hexagona? n-sided?
8. Error Analysis A cone has height 7 and radius 3 . Your classmate calculates its lateral
 area. What is your classmate's error? Explain.

Find the surface area of each pyramid to the nearest whole number
9.

10.

11.

See Problem 1.

Find the lateral area of each pyramid to the nearest whole number.
12.

13.

14.

15. Social Studies The original height of the Pyramid of Khafre, located next to the Great Pyramid in Egypt, was about 471 ft . Each side of its square base was about 708 ft . What is the lateral area, to the nearest square foot, of a pyramid with those dimensions?

Find the lateral area of each cone to the nearest whole number.
16.

17.

18.

Find the surface area of each cone in terms of π.
19.

20.

21.

22. Reasoning Suppose you could climb to the top of the Great Pyramid. Which route would be shorter, a route along a lateral edge or a route along the slant height of a side? Which of these routes is steeper? Explain your answers.
23. The lateral area of a cone is $4.8 \pi \mathrm{in}^{2}{ }^{2}$. The radius is 1.2 in . Find the slant height.
Practice and Problem-SolvingExcercises
9. $408 \mathrm{in.}^{2}$
10. $138 \mathrm{~m}^{2}$
11. $179 \mathrm{in}^{2}{ }^{2}$
12. $204 \mathrm{~m}^{2}$
13. $354 \mathrm{~cm}^{2}$
14. $51 \mathrm{~m}^{2}$
15. $834,308 \mathrm{ft}^{2}$
16. 1044 in. 2
17. $31 \mathrm{~m}^{2}$
18. $47 \mathrm{~cm}^{2}$
19. $144 \pi \mathrm{~cm}^{2}$
20. $33 \pi \mathrm{ft}^{2}$
21. $119 \pi \mathrm{~cm}^{2}$
22. Slant height; slant height; the slant height is shorter because it is one leg of a rt. \triangle with the lateral edge as the hypotenuse, and it is steeper because it rises the same vertical distance for a shorter horizontal distance.
23. 4 in.

