11-1 Space Figures and Cross Sections

Objectives To recognize polyhedrons and their parts
To visualize cross sections of space figures

If you can shift your perspective by reflecting or rotating to get another net, then those nets are the same.

Lesson
Vocabulary

- polyhedron
- face
- edge
- vertex
- cross section

In the Solve It, you used two-dimensional nets to represent a three-dimensional object.
The tisetve box at the right is a rectangular solid. Lat $x=$ the number of corners, $y=$ the number of flat surioces, and $z=$ the number of folded creases. What is an equation that relates the quantities X. Y, and z for a rectangular solid? wil your equation hole irue for a cube? A solid With a tiangular top and bottom? Explain. A polyhedron is a space figure, or three-dimensional figure, whose surfaces are polygons. Each polygon is a face of the polyhedron. An edge is a segment that is formed by the intersection of two faces. A vertex is a point where three or more edges intersect.

Essential Understanding You can analyze a three-
 dimensional figure by using the relationships among its vertices, edges, and faces.

Problem 1 Identifying Vertices, Edges, and Faces

Can you see the solid?

A dashed line indicates an edge that is hidden from view. This figure has one four-sided face and four triangular faces.

How many vertices, edges, and faces are in the polyhedron at the right? List them.

There are five vertices: D, E, F, G, and H.
There are eight edges: $\overline{D E}, \overline{E F}, \overline{F G}, \overline{G D}, \overline{D H}, \overline{E H}, \overline{F H}$, and $\overline{G H}$.
There are five faces: $\triangle D E H, \triangle E F H, \triangle F G H, \triangle G D H$, and quadrilateral $D E F G$.

1. a. How many vertices, edges, and faces are in the polyhedron at the right? List them.
b. Reasoning Is $\overline{T V}$ an edge? Explain why or why not.

Leonhard Euler, a Swiss mathematician, discovered a relationship among the numbers of faces, vertices, and edges of any polyhedron. The result is known as Euler's Formula.

c notes

Key Concept Euler's Formula

The sum of the number of faces (F) and vertices (V) of a polyhedron is two more than the number of its edges (E).
$F+V=E+2$

Problem 2 Using Euler's Formula

How many vertices, edges, and faces does the polyhedron at the right have? Use your results to verify Euler's Formula.

Count the number of faces.

$$
F=8
$$

Count the number of vertices.

$$
V=12
$$

Count the number of edges.

$$
E=18
$$

Substitute the values into
Euler's Formula.

$$
\begin{aligned}
F+V & =E+2 \\
8+12 & \stackrel{?}{=} 18+2 \\
20 & =20
\end{aligned}
$$

Got It?
2. For each polyhedron, use Euler's Formula to find the missing number.

faces:
edges: 30
vertices: 20
b.

faces: 20
edges:
vertices: 12

What do you use for the variables?

$\ln 3-\mathrm{D}$	$\ln 2-\mathrm{D}$
F: Faces	\rightarrow Regions
$V:$ Vertices \rightarrow Vertices	
E: Edges \rightarrow Segments	

of regions formed by V vertices linked by E segments.

Problem 3 Verifying Euler's Formula in Two Dimensions

How can you verify Euler's Formula for a net for the solid in Problem 2?
Draw a net for the solid.
Number of regions: $l:=8$
Number of vertices: $V=22$
Number of segments: $E=29$

$$
\begin{aligned}
F+V & =E+1 & & \text { Euler's Formula for two dimensions } \\
8+22 & =29+1 \quad & & \text { Substitute. } \\
30 & =30 \boldsymbol{\imath} & &
\end{aligned}
$$

Got It? 3. Use the solid at the right.
a. How can you verify Euler's Formula $F+V=E+2$ for the solid?
b. Draw a net for the solid.
c. How can you verify Euler's Formula $F+V=E+1$ for
 your two-dimensional net?

A cross section is the intersection of a solid and a plane. You can think of a cross section as a very thin slice of the solid.

This cross section is a triangle.

How can you see the cross section?
Mentally rotate the solid so that the plane is parallel to your face.

> The cross section is a rectangle.

Got It? 4. For the solid at the right, what is the cross section formed by each of the following planes?
a. a horizontal plane
b. a vertical plane that divides the solid in half

To draw a cross section, you can sometimes use the idea from Postulate 1-3 that the intersection of two planes is exactly one line.

Problem 5 Drawing a Cross Section

How can you see paralilel segments?
couls on th cous on the plane
interecting the notit foces. The poth fares are vertical so the intersections are retical parallel lines.

Visualization Draw a cross section formed by a vertical plane intersecting the front and right faces of the cube. What shape is the cross section?

Step 1
Visualize a vertical plane intersecting the vertical faces in parallel segments.

Step 2

Draw the parallel segments.

Step 3
Join their endpoints.
Shade the cross section.

The cross section is a rectangle.
Got lt? 5. Draw the cross section formed by a horizontal plane intersecting the left and right faces of the cube. What shape is the cross section?

Lesson Check

Do you know HOW?

1. How many faces, edges, and vertices are in the solid? List them.
2. What is a net for the solid
 in Exercise 1? Verify Euler's Formula for the net.
3. What is the cross section formed by the cube and the plane containing the diagonals of a pair of opposite faces?

Do you UNDERSTAND?

4. Vocabulary Suppose you build a polyhedron from two octagons and eight squares. Without using Euler's Formula, how many edges does the solid have? Explain.
5. Error Analysis Your math class is drawing polyhedrons. Which figure does not belong in the diagram below? Explain.

Practice and Problem-Solving Exercises

For each polyhedron, how many vertices, edges, and faces are there? List them.

7.

8.

For each polyhedron, use Euler's Formula to find the missing number.
9. faces:
edges: 15
vertices: 9
10. faces: 8
edges:
vertices: 6
11. faces: 20
edges: 30 vertices:

Use Euler's Formula to find the number of vertices in each polyhedron.
12. 6 square faces
13. 5 faces: 1 rectangle and 4 triangles
14. 9 faces: 1 octagon and 8 triangles

Verify Euler's Formula for each polyhedron. Then draw a net for the figure and verify Euler's Formula for the two-dimensional figure.

16.

17.

Describe each cross section.
18.

19.

20.

Visualization Draw and describe a cross section formed by a vertical plane intersecting the cube as follows.
21. The vertical plane intersects the front and left faces of the cube.
22. The vertical plane intersects opposite faces of the cube.
23. The vertical plane contains the red edges of the cube.

