10.1 The Square Root Property

1 Know that every positive real number has two square roots.

2 Solve quadratic equations using the square root property.

Understanding Algebra

The symbol \pm is read "plus or minus."

In Section 5.6 we solved quadratic equations by factoring. Recall that quadratic equa. tions are equations of the form

$$
a x^{2}+b x+c=0
$$

where a, b, and c are real numbers, $a \neq 0$. A quadratic equation in this form is said to be in standard form. Solving quadratic equations by factoring is the preferred tech. nique when the factors can be found quickly.

However, not every quadratic equation can be factored easily, and many cannot be factored at all. In this chapter we give two techniques, completing the square and the quadratic formula, for solving quadratic equations that cannot be solved by factoring.

1 Know That Every Positive Real Number Has Two Square Roots

In Section 9.1 we stated that every positive number has two square roots. For example, the positive or principal square root of 49 is 7 .

$$
\sqrt{49}=7
$$

The negative square root of 49 is -7 .

$$
-\sqrt{49}=-7
$$

The two square roots of 49 are +7 and -7 . A convenient way to indicate the two square roots of a number is to use the plus or minus symbol, \pm. For example, the square roots of 49 can be indicated ± 7, read "plus or minus 7."

Number	Both Square Roots
64	± 8
100	± 10
3	$\pm \sqrt{3}$
7	$\pm \sqrt{7}$

An approximation of a number like $-\sqrt{5}$ can be found by evaluating $\sqrt{5}$ on your calculator and then taking its opposite or negative value.

$$
\begin{aligned}
\sqrt{5} & \approx 2.24 \quad \text { (rounded to the nearest hundredth) } \\
-\sqrt{5} & \approx-2.24
\end{aligned}
$$

Now consider the equation

$$
x^{2}=49
$$

We can see by substitution that this equation has two solutions, 7 and -7 .
Check $\left.\begin{array}{rlrl}x & =7 & x & =-7 \\ x^{2} & =49 & x^{2} & =49 \\ 7^{2} & \stackrel{?}{=} 49 & (-7)^{2} & \stackrel{?}{=} 49 \\ 49 & =49 & \text { True } & 49\end{array}\right)=49$ True

Therefore, the solutions to the equation $x^{2}=49$ are 7 and -7 (or ± 7).

2 Solve Quadratic Equations Using the Square Root Property

In general, for any quadratic equation of the form $x^{2}=a$, we can use the square roet property to obtain the solution.

Square Root Property
If $x^{2}=a$, then $x=\sqrt{a}$ or $x=-\sqrt{a}$ (abbreviated $x= \pm \sqrt{a}$).

For example, if $x^{2}=7$, then by the square root property, $x=\sqrt{7}$ or $x=-\sqrt{7}$. We may also write $x= \pm \sqrt{7}$.

EXAMPLE 1 Solve the equation $x^{2}-25=0$.

Solution Before we use the square root property we must isolate the squared variable. Add 25 to both sides of the equation to get the variable by itself on one side of the equation.

$$
\begin{aligned}
x^{2}-25 & =0 & & \\
x^{2} & =25 & & \text { Added } 25 \text { to both sides } \\
x & = \pm \sqrt{25} & & \text { Used square root property. } \\
x & = \pm 5 & &
\end{aligned}
$$

Check in the original equation.
Check

$$
\begin{array}{rlrl}
x & =5 & x=-5 \\
x^{2}-25 & =0 & x^{2}-25=0 \\
5^{2}-25 & \stackrel{?}{=} 0 & (-5)^{2}-25=0 \\
25-25 \stackrel{?}{=} 0 & 25-25 \stackrel{?}{=} 0 \\
0 & =0 & \text { True } & 0=0 \quad \text { True }
\end{array}
$$

NowTry Exercise 7
EXAMPLE 2 Solve the equation $x^{2}+10=74$.

Solution

$$
\begin{aligned}
x^{2}+10 & =74 & & \\
x^{2} & =64 & & \text { Subtracted } 10 \text { from both sides } \\
x & = \pm \sqrt{64} & & \text { Square root property } \\
x & = \pm 8 & &
\end{aligned}
$$

NowTry Exercise 13
EXAMPLE 3 Solve the equation $a^{2}-13=0$.

Solution

$$
\begin{aligned}
a^{2}-13 & =0 & & \\
a^{2} & =13 & & \text { Added } 13 \text { to both sides } \\
a & = \pm \sqrt{13} & & \text { Square root property }
\end{aligned}
$$

$$
\text { NowTry Exercise } 15
$$

EXAMPLE 4 Solve the equation $(x-3)^{2}=4$.
Solution Begin by using the square root property.

$$
\begin{aligned}
(x-3)^{2} & =4 \\
x-3 & = \pm \sqrt{4} \quad \text { Square root property } \\
x-3 & = \pm 2 \\
x-3+3 & =3 \pm 2 \quad \text { Add } 3 \text { to both sides. } \\
x & =3 \pm 2 \\
x=3+2 & \text { or } \quad x=3-2 \\
x=5 & \quad x=1
\end{aligned}
$$

EXAMPLE 5 Solve the equation $(5 x+4)^{2}-2=16$.
Solution We must first isolate the squared term.

$$
\begin{array}{rlrl}
(5 x+4)^{2}-2 & =16 & & \text { Added } 2 \text { to both sides to } \\
(5 x+4)^{2} & =18 & & \text { isolate the squared term. } \\
5 x+4 & = \pm \sqrt{18} & & \text { Square root property } \\
5 x+4 & = \pm \sqrt{9} \sqrt{2} & & \text { Simplify } \sqrt{18 .} \\
5 x+4 & = \pm 3 \sqrt{2} & & \\
5 x+4-4 & =-4 \pm 3 \sqrt{2} & \text { Subtract } 4 \text { from both sides. } \\
5 x & =-4 \pm 3 \sqrt{2} & & \\
x & =\frac{-4 \pm 3 \sqrt{2}}{5} & & \text { Divide both sides by } 5 .
\end{array}
$$

The solutions are $\frac{-4+3 \sqrt{2}}{5}$ and $\frac{-4-3 \sqrt{2}}{5}$.
NowTry Exercise 43
Now let's look at one of many applications of quadratic equations.

EXAMPLE 6 Creating Advertisements Antoinette LeMans designed a magazine advertisement for her company in the shape of a rectangle whose length is 1.62 times its width. Find the dimensions of the advertisement if it is to have an area of 20 square inches. See Figure 10.1.
Solution Understand and Translate

Summer Blowout
BIE TIME CAR SALE $1.62 x$

Carry Out

$$
\text { Then } 1.62 x=\text { length of rectangle } .
$$

$$
\begin{aligned}
\text { area } & =\text { length } \cdot \text { width } \\
20 & =(1.62 x) x \\
20 & =1.62 x^{2} \\
\text { or } 1.62 x^{2} & =20 \\
x^{2} & =\frac{20}{1.62} \approx 12.3 \\
x & \approx \pm \sqrt{12.3} \approx \pm 3.51 \text { inches }
\end{aligned}
$$

Check and Answer Since the width cannot be negative, the width, x, is approximately 3.51 inches. The length is about $1.62(3.51)=5.69$ inches.
Check

$$
\begin{aligned}
\text { area } & =\text { length } \cdot \text { width } \\
20 & \stackrel{?}{=}(5.69)(3.51) \\
20 & \approx 19.97
\end{aligned}
$$

True (There is a slight round off error due to rounding off decimal answers.)

NowTry Exercise 57

EXERCISE SET 10.1

Math ${ }^{\text {XL }}$

MathXL ${ }^{\oplus}$

MyMathLab

MyMathLab

Warm-Up Exercises

Fill in the blanks with the appropriate word, phrase, or symbol(s) from the following list.
three standard one square root propert add two square isolate
$\pm \sqrt{10}$
quadratic
2. An equation written in the form $a x^{2}+b x+c=0$ is said ${ }^{10}$ be in \qquad form.

