3.3 Geometric Problems

Solve geometric problems.

Understanding Algebra

Recall some useful geometry formulas:

Rectangle	Area: $A=1 \cdot w$
	Perimeter: $P=2 I+2 w$
Triangle	Area: $A=\frac{1}{2} b \cdot h$
	Sum of the measures of the interior angles $=180^{\circ}$
QuadrilateralSum of the measures of the interior angles $=360^{\circ}$ Area $=\pi r^{2}$	
Circle	Circumference $=2 \pi r$

1 Solve Geometric Problems

This section serves two purposes. One is to reinforce the geometric formulas introduced in Section 2.6. The second is to reinforce procedures for setting up and solving verbal problems discussed in Sections 3.1 and 3.2.

EXAMPLE 1 Sandbox Christine O'Connor is planning to build a sandbox for her daughter. She has 30 feet of lumber with which to build the perimeter. What should be the dimensions of the rectangular sandbox if the length is to be 3 feet longer than the width (Fig. 3.3)?

Solution Understand We are asked to find the dimensions of the sandbox that Christine plans to build. The perimeter of the sandbox will be 30 feet. Since the length is given in terms of the width, we will let w represent the width. Then we can express the length in terms of w. To solve this problem, we use the formula for the perimeter of a rectangle, $P=2 l+2 w$, where $P=30$ feet.

Translate

Carry Out

$$
\text { Let } w=\text { width of the sandbox. }
$$

Then $w+3=$ length of the sandbox.

$$
\begin{aligned}
P & =2 l+2 w \\
30 & =2(w+3)+2 w \\
30 & =2 w+6+2 w \\
30 & =4 w+6 \\
24 & =4 w \\
6 & =w
\end{aligned}
$$

FIGURE 3.3

Understanding Algebra

Additional geometry facts:
Equilateral triangle: has 3 equal sides and 3 equal angles (all 60°)
Isosceles triangles: has 2 equal sides
Congruent triangles: corresponding sides and corresponding angles are equal
Similar triangles: corresponding sides are in proportion and corresponding angles are equal
Polygon with n sides: sum of the measures of the interior angles is $(n-2) 180^{\circ}$
Complementary angles: angles whose measures add to 90°
Supplementary angles: angles whose measures add to 180°

The width is 6 feet. Since the length is 3 feet longer than the width, the length is $6+3=9$ feet .
Check We will check the solution by substituting the appropriate values in the perimeter formula.

$$
\begin{array}{rlr}
P & =2 l+2 w & \\
30 & \stackrel{?}{=} 2(9)+2(6) & \\
30 & =30 & \text { True }
\end{array}
$$

Answer The width of the sandbox will be 6 feet and the length will be 9 feet.

$$
\text { NowTry Exercise } 23
$$

A triangle that contains two sides of equal length is called an isosceles triangle In isosceles triangles, the angles opposite the two sides of equal length have equal measures.

EXAMPLE 2 Corner Lot Mr. and Mrs. Harmon Katz have a corner lot that is in the shape of an isosceles triangle. Two angles of their triangular lot are the same and the third angle is 30° greater than the other two. Find the measure of all three angles (see Fig. 3.4).
Solution Understand To solve this problem, you must know that the sum of the angles of any triangle measures 180°. We are asked to find the measure of each of the three angles, where the two smaller angles have the same measure. We will let x represent the measure of the smaller angles, and then we will express the larger angle in terms of x.

Translate
Let $x=$ the measure of each smaller angle.
Then $x+30=$ the measure of the larger angle

$$
\text { sum of the } 3 \text { angles }=180
$$

Carry Out

$$
\begin{aligned}
x+x+(x+30) & =180 \\
3 x+30 & =180 \\
3 x & =150 \\
x & =\frac{150}{3}=50
\end{aligned}
$$

The two smaller angles are each 50°. The larger angle is $x+30^{\circ}$ or $50^{\circ}+30^{\circ}=80^{\circ}$. Check and Answer Since $50^{\circ}+50^{\circ}+80^{\circ}=180^{\circ}$, the answer checks. The two smaller angles are each 50° and the larger angle is 80°.

Now Try Exercise 11

Recall from Section 2.6 that a quadrilateral is a four-sided figure. Quadrilaterals include squares, rectangles, parallelograms, and trapezoids. The sum of the measures of the angles of any quadrilateral is 360°.

EXAMPLE 3 Water Trough Sarah Fuqua owns horses and uses a water trough whose ends are trapezoids. The measure of the two bottom angles of the trapezoid are the same, and the measure of the two top angles are the same. The bottom angles measure 15° less than twice the measure of the top angles. Find the measure of each angle.
Solution Understand To help visualize the problem, we draw a picture of the trapezoid, as in Figure 3.5. We use the fact that the sum of the measures of the four angles of a quadrilateral is 360°.

Translate Let $x=$ the measure of each of the two smaller angles.
Then $2 x-15=$ the measure of each of the two larger angles.

$$
\begin{aligned}
\binom{\text { measure of the }}{\text { two smaller angles }}+\binom{\text { measure of the }}{\text { two larger angles }} & =360 \\
x+x+(2 x-15)+(2 x-15) & =360 \\
x+x+2 x-15+2 x-15 & =360 \\
6 x-30 & =360 \\
6 x & =390 \\
x & =65
\end{aligned}
$$

Each smaller angle is 65°. Each larger angle is $2 x-15=2(65)-15=115^{\circ}$.
Check and Answer Since $65^{\circ}+65^{\circ}+115^{\circ}+115^{\circ}=360^{\circ}$, the answer checks. Each smaller angle is 65° and each larger angle is 115°.

NowTry Exercise 27
EXAMPLE 4 Fenced-In Area Ronald Yates recently started an ostrich farm. He is separating the ostriches by fencing in three equal rectangular areas, as shown in Figure 3.6. The length of the fenced-in area, l, is to be 30 feet greater than the width and the total amount of fencing available is 660 feet. Find the length and width of the fenced-in area.

FIGURE 3.6

Solution Understand The fencing consists of four pieces of fence of length w, and two pieces of fence of length l.
Translate
Let $w=$ width of fenced-in area.
Then $w+30=$ length of fenced-in area.
$\binom{4$ pieces of fence }{ of length $w}+\binom{2$ pieces of fence }{ of length $w+30}=660$
Carry Out

$$
\begin{aligned}
4 w+2(w+30) & =660 \\
4 w+2 w+60 & =660 \\
6 w+60 & =660 \\
6 w & =600 \\
w & =100
\end{aligned}
$$

Since the width is 100 feet, the length is $w+30$ or $100+30$ or 130 feet.
Check and Answer Since $4(100)+2(130)=660$, the answer checks. The width of the fenced-in area is 100 feet and the length is 130 feet.

Now Try Exercise 37

EXERCISE SET 3.3

Math XL MyMathLab

Math $\times L^{\oplus}$
MyMathLab

Warm-Up Exercises

Fill in the blanks with the appropriate word, phrase, or symbol(s) from the following list.

360°	180°	90°	$2 l+12$	12	equilateral
10	quadrilateral	$l \cdot w$	45°	isosceles	

1. In a rectangle, the length is 1 inch more than twice the width and the perimeter is 62 inches. Then the width is
\qquad inches.
2. The area of a rectangle is 120 square inches. If the length is 10 inches, then the width is \qquad inches.
3. The sum of the measures of the interior angles of a quadrilateral is \qquad -.
4. The sum of the measures of the angles of a triangle is
5. A triangle with two equal sides is called \qquad -.
6. A triangle with three equal sides is called \qquad
7. The area of a rectangle of length l and width w is
8. A four-sided figure is called a \qquad .
9. If one angle of an sosccies triangle is 90°. then each other angle must meacure

Practice the Skills Problem Solving

Solve the following geometric problems.
11. Hosceles Triangle In an isosceles triangle. one angle is 42° greater than the other two equal angles. Find the measure of all three angles See Evample 2 .
12. Triangular Building Thus building in Vew York City. referred to as the Flatiron Building has a perimeter in the shape of an isosceles triangle. If the shortest side of the triangle is 50 feet shorter than the two longer sides and the permmeter is 196 feet. determine the length of the three sides of the thangle

13. A Special Triangle An equilateral triangle is a triangle that has three sides of the same length. The perimeter of an equilateral triangle is 345 inches. Find the length of each side.
14. Equilateral Triangle The perimeter of an equilateral triangle is 48.6 centimeters. Find the length of each side. See Exercise 13.
15. Complementary Angles Two angles are complementary angles if the sum of their measures is 90°. Angle A and angle B are complementary angles and angle A is 21° more than twice angle B. Find the measures of angle A and angle B.

> Complementary Angles

16. Complementary Angles Angles A and B are complementary angles, and angle B is 14° less than angle A. Find the measures of angle A and angle B. See Exercise 15 .
17. Supplementary Angles Two angles are supplementary angles if the sum of their measures is 180°. Angle A and angle B are supplementary angles, and angle B is 8° less than three times angle A. Find the measures of angle A and angle B.

10. The perimeter of a rectangle of length
18. Supplementary Angles Angles A and B are seppitaten angles and angle A is 2° more than 4 timptsen
Find the measures of angle A and angle B. Sot. F. 17.
19. Vertical Angles When two lines intersect the gles are called vertical angles. Vertical angles tons, measures. Determine the measures of the verncal apo dicated in the following figure.

20. Vertical Angles A pair of vertical angles is indicate , following figure. Determine the measure of the vencz gles indicated. See Exercise 19.

21. Unknown Angles One angle of a triangle is 10" Pere than the smallest angle. and the third angle is 30^{t} as a twice the smallest angle. Find the measures of th: $=$ angles.
22. Unknown Angles One angle of a triangle is 20° larget 3 the smallest angle, and the third angle is 6 times as 48 as the smallest angle. Find the measures of the $=$ angles.
23. Dimensions of Rectangle The length of a rectangle som more than its width. What are the dimensions of the rtite gle if the perimeter is 44 feet?
24. Dimensions of Rectangle The perimeter of a rectangr 120 feet. Find the length and width of the rectangle length is twice the width.
25. Tennis Court The length of a regulation tennis cout? feet greater than twice its width. The perimeter of court is 228 feet. Find the length and width of the ar
 perimeter of the patio is to be 96 feet Dectangular patio. The sions of the patio if the length is to be 6 feet less than twice the width.
$+27$.
Parallelogram In a parallelogram the opposite angles have the same measures. Each of the two larger angles in a parallelogram is 20° less than 3 times the smaller angles. Find the measure of each angle.

28. Parallelogram The two smaller angles of a parallelogram have equal measures, and the two larger angles each measure 27° less than twice each smaller angle. Find the measure of each angle.
29. Rhombus A rhombus is a parallelogram with four equal sides. Each of the two larger angles of a rhombus is 5 times as large as the two smaller angles. Find the measure of each of the four angles.

30. Rhombus Each of the two larger angles of a rhombus are 20° less than four times the two smaller angles. Find the measure of each of the four angles.
31. Quadrilateral The measure of one angle of a quadrilateral is 10° greater than the smallest angle; the third angle is 14° greater than twice the smallest angle; and the fourth angle is 21° greater than the smallest angle. Find the measures of the four angles of the quadrilateral.
32. Quadrilateral The measure of one angle of a quadrilateral is twice the smallest angle; the third angle is 20° greater than the smallest angle; and the fourth angle is 20° less than twice the smallest angle. Find the measures of the four angles of the quadrilateral.

- 33. Building a Bookcase A bookcase is to have four shelves, including the top, as shown. The height of the bookcase is to be 3 feet more than the width. Find the width and height of the bookcase if only 30 feet of lumber is available.

34. Bookcase A bookcase is to have four shelves as shown. The height of the bookcase is to be 2 feet more than the width, and only 20 feet of lumber is available. What should be the width and height of the bookcase?

35. American Flag The dimensions of the American flag appear in the figure below. The perimeter of this particular flag is 580 inches.
a) Determine its length and width.
b) What is the width of each of the stripes?
c) The (left-to-right) width of the blue rectangle is always 76% of the vertical height of the flag. How many inches is that blue width?
d) The vertical height of the blue rectangle is always 53.85% of the vertical height of the flag. How many inches is the blue height?
e) What is the area of this flag?

Source: www.usflag.org
36. Storage Shelves Carlotta Perez plans to build storage shelves as shown. She has only 45 feet of lumber for the entire unit and wishes the width to be 3 times the height. Find the width and height of the unit.

37. Fenced-In Area A rectangular area is to be fenced in along a straight river bank as illustrated. The length of the fenced-in area is to be 5 feet greater than the width, and the total amount of fencing to be used is 71 feet. Find the width and length of the fenced-in area.

